"One is absolutely sickened, not by the crimes that the wicked have committed, but by the punishments that the good have inflicted." - Oscar Wilde

Saturday, September 10, 2016

Move over DNA. Scientists can identify you based on the unique pattern of proteins in your hair

Human hair under the microscope
Human hair under the microscope
A strand of hair at a crime scene, or clinging to human remains unearthed by archaeologists, could hold new promise as a means to identify its unique owner and unravel mysteries sealed by the passage of time.

In research published this week, scientists from Lawrence Livermore National Laboratories reported they are devising a test of human hair that could fingerprint its owner in cases in which DNA evidence is fragmented, damaged or nowhere to be found. Like DNA sequencing, the test they have devised not only could identify an individual but trace his or her ancestry.

The researchers’ discovery, reported Wednesday in the journal PLoS One, addresses one of forensic scientists’ most pressing needs: a reliable alternative to DNA identification. DNA is actually quite fragile and notoriously vulnerable to degradation with time and exposure to the environment. It’s tricky to coax a full sequence from an old biological sample or one that’s been buried, frozen or baked in the sun.

While a shaft of hair often is presented as evidence in an old-fashioned whodunit, it does not actually contain nuclear DNA, the chemical blueprint an individual inherits from both parents. It does contain mitochondrial DNA, but because that is passed down matrilineally, it has limits as a means of identification.

In quainter times, investigators might put a hair under a microscope and compare it to, say, that of a defendant. But in current forensic science, a seeming match under the microscope would not be accepted as proof that two different shafts of hair came from the same person.

Every strand of hair is made up of proteins. In addition to being more resilient to environmental damage than DNA, those proteins are like an echo of a person’s DNA, said Brad Hart, co-author of a paper and director of Livermore’s Forensic Science Center.

It’s a simple but ingenious idea, conceived in 2013 by the paper’s lead author, Glendon Parker, then a biochemistry professor at Utah Valley University and now a scientist at Livermore: DNA provides the blueprint for proteins. So the coding quirks found in an individual’s DNA (called single nucleotide polymorphisms, or SNPs) will translate into recognizable variants in the proteins, known as single amino acid polymorphisms (SAPs).

These SAPs are the protein markers that could guide future forensic scientists in identifying an individual even when DNA is not available. While they can be found in a single strand of hair, they also can be found in shed skin cells, bones and teeth.

Currently, it takes about two-and-a-half days to prepare a sample and sequence and analyze its proteins. Its cost, say the authors, likely will be competitive with other forensic tests.

Click here to read the full article

Source: L.A. Times, Melissa Healy, September 9, 2016

⚑ | Report an error, an omission; suggest a story or a new angle to an existing story; send a submission; recommend a resource; contact the webmaster, contact us: deathpenaltynews@gmail.com.

Opposed to Capital Punishment? Help us keep this blog up and running! DONATE!